LeuO protein delimits the transcriptionally active and repressive domains on the bacterial chromosome.
نویسندگان
چکیده
LeuO protein relieves bacterial gene silencer AT8-mediated transcriptional repression as part of a promoter relay mechanism found in the ilvIH-leuO-leuABCD gene cluster. The gene silencing activity has recently been characterized as a nucleoprotein filament initiated at the gene silencer. In this gene locus, the nucleoprotein filament cis-spreads toward the target leuO promoter and results in the repression of the leuO gene. Although the cis-spreading nature of the transcriptionally repressive nucleoprotein filament has been revealed, the mechanism underlying LeuO-mediated gene silencing relief remains unknown. We have demonstrated here that LeuO functions analogously to the eukaryotic boundary element that delimits the transcriptionally active and repressive domains on the chromosome by blocking the cis-spreading pathway of the transcriptionally repressive heterochromatin. Given that one LeuO-binding site is positioned between the gene silencer and the target promoter, the simultaneous presence of a second LeuO-binding site synergistically enhances the blockade, resulting in a cooperative increase in LeuO-mediated gene silencing relief. A known DNA loop-forming protein, the lac repressor (LacI), was used to confirm that cooperative protein binding via DNA looping is responsible for the blocking synergy. Indeed, a distal LeuO site located downstream cooperates with the LeuO sites located upstream of the leuO gene, resulting in synergistic relief for the repressed leuO gene via looping out the intervening DNA between LeuO sites in the ilvIH-leuO-leuABCD gene cluster.
منابع مشابه
Histone methylation by PRC2 is inhibited by active chromatin marks.
The Polycomb repressive complex 2 (PRC2) confers transcriptional repression through histone H3 lysine 27 trimethylation (H3K27me3). Here, we examined how PRC2 is modulated by histone modifications associated with transcriptionally active chromatin. We provide the molecular basis of histone H3 N terminus recognition by the PRC2 Nurf55-Su(z)12 submodule. Binding of H3 is lost if lysine 4 in H3 is...
متن کاملProtein occupancy landscape of a bacterial genome.
Protein-DNA interactions are fundamental to core biological processes, including transcription, DNA replication, and chromosomal organization. We have developed in vivo protein occupancy display (IPOD), a technology that reveals protein occupancy across an entire bacterial chromosome at the resolution of individual binding sites. Application to Escherichia coli reveals thousands of protein occu...
متن کاملRegional Assignment of Ptpre Encoding Protein Tyrosine Phosphataes ε to Mouse Chromosome 7F3
Protein tyrosine phosphatases (PTPases) regulate the tyrosine phosphorylation of target proteins involved in several biological activities including cell proliferation and transformation. Protein tyrosine phosphatase E (PTPE) contains duplicated PTPase-like domains and a short extracellular region. Using the fluorescence in situ hybridization method, the gene encoding PTPE (locus symbol Ptpre...
متن کامل-
The homeobox genes are known to play a crucial role in controlling the development of multicellular organisms. The majority of these genes have been determined to express regulatory proteins act as a regulatory protein. These trans-acting factors regulate the expression of proteins that are necessary during the developmental processes throughout the body. TGIFLX/Y is a homeobox gene and it cont...
متن کاملHigh-Resolution Mapping Reveals Links of HP1 with Active and Inactive Chromatin Components
Heterochromatin protein 1 (HP1) is commonly seen as a key factor of repressive heterochromatin, even though a few genes are known to require HP1-chromatin for their expression. To obtain insight into the targeting of HP1 and its interplay with other chromatin components, we have mapped HP1-binding sites on Chromosomes 2 and 4 in Drosophila Kc cells using high-density oligonucleotide arrays and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 15 شماره
صفحات -
تاریخ انتشار 2005